Interrupt Driven System Characteristics

An important aspect of network management concerns keeping track of the health of the network. In particular, this involves monitoring the network for any alarms that network elements emit. Network elements emit alarms whenever unexpected events occur that might require management attention. In many cases, this involves unusual conditions or failures in the network that require immediate action to avoid degradation of service to customers. With communications services, time is money quite literally—after all, every second of service outage leads to loss of productivity of users in an enterprise and lost revenue to service providers. Alarm monitoring applications can receive and process such alarms, enabling the network manager to get an accurate view of the current state and health of the network, and alerting the network manager to take action when it is required.

Figure 1-10 sketches the function of an alarm monitoring system. Alarms that are received, for example, are displayed on a graphical user interface (GUI) and icons animated with color indicate whether a device is healthy or whether it is currently experiencing problems.

By their nature, alarm monitoring applications call for interrupt-driven systems with real-time or near-real-time characteristics. In a way, they share characteristics with stock-brokering applications that need to keep users updated in real time with constant fluctuations in the prices of thousands of different stocks and alert them of any unusual stock movements because failure to react quickly can result in large amounts of money lost. Again, most people agree that building such a stock-brokering application is not trivial. Compare this with the need to reliably keep network operators up-to-date with the state of thousands or tens of thousands of network devices and service for hundreds of thousands of users.

Figure 1-10 Alarm Monitoring

Was this article helpful?

0 0

Post a comment